A Comprehensive FPGA-Based Assessment on Fault-Resistant AES against Correlation Power Analysis Attack
نویسندگان
چکیده
The secret key used in a cryptosystem can be retrieved by physical attacks such as side-channel analysis (SCA) and fault analysis (FA) attacks. Traditionally, countermeasures for different physical attacks are developed in a separate fashion. To lay a solid foundation for countermeasure development for the emerging combined attacks, it is imperative to thoroughly study how the countermeasure for one attack affects the efficiency of other attack. In this work, we use a FPGA-based platform to investigate whether and how the FA countermeasure can influence the efficiency of the correlation power analysis (CPA) attack. Unlike the previous work using simulations on the S-Box only, our assessments are based on the FPGA emulation of the entire AES. In addition to considering different error detection codes, we compare the key retrieval speed of the CPA attack in the scenarios of using different power models, redundancy types for fault detection, modules under fault protection, and practical FPGA synthesis optimization. Furthermore, we propose a new countermeasure that integrates dynamic masking and error deflection to simultaneously thwart CPA and FA attacks. Experimental results show that for 100,000 power traces, our method successfully prevents the key leakage while other methods leak at least five AES subkey bytes. Meanwhile, our simulation also confirms that the proposed method reduces the success rate of FA attacks by up to 90 % over the other methods.
منابع مشابه
The Research of Correlation Power Analysis on a AES Implementations
Among various side-channel attacks, power analysis pose a serious threat to the security of different cryptographic implementations such as Simple Power Analysis (SPA), Differential Power Analysis (DPA) and Correlation Power Analysis (CPA). Such attacks typically involve representing the relationship between the instantaneous power consumption of a device executing a cryptographic algorithm, an...
متن کاملCPA on COLM Authenticated Cipher and the Protection Using Domain-Oriented Masking
Authenticated encryption schemes are important cryptographic primitives that received extensive attention recently. They can provide both confidentiality and authenticity services, simultaneously. Correlation power analysis (CPA) can be a thread for authenticated ciphers, similar to the any physical implementation of any other cryptographic scheme. In this paper, a three-step CPA attack against...
متن کاملDifferential Power Analysis: A Serious Threat to FPGA Security
Differential Power Analysis (DPA) implies measuring the supply current of a cipher-circuit in an attempt to uncover part of a cipher key. Cryptographic security gets compromised if the current waveforms obtained correlate with those from a hypothetical power model of the circuit. As FPGAs are becoming integral parts of embedded systems and increasingly popular for cryptographic applications and...
متن کاملPower equalization of AES FPGA implementation
This paper briefly introduces side channel attacks on cryptographic hardware with special emphasis on differential power analysis (DPA). Based on existing countermeasures against DPA, design method combining power equalization for synchronous and combinatorial circuits has been proposed. AES algorithm has been implemented in Xilinx Spartan II-E field programmable gate array (FPGA) device using ...
متن کاملAn Information Theoretic Perspective on the Differential Fault Analysis against AES
Differential Fault Analysis against AES has been actively studied these years. Based on similar assumptions of the fault injection, different DFA attacks against AES have been proposed. However, it is difficult to understand how different attack results are obtained for the same fault injection. It is also difficult to understand the relationship between similar assumptions of fault injection a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Electronic Testing
دوره 32 شماره
صفحات -
تاریخ انتشار 2016